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SUMMARY 

Fundamental concepts underlying spectral collocation methods, especially pertaining to their use in the 
solution of partial differential equations, are outlined. Theoretical accuracy results are reviewed and 
compared with results from test problems. A number of practical aspects of the construction and use of 
spectral methods are detailed, along with several solution schemes which have found utility in applications of 
spectral methods to practical problems. Results from a few of the successful applications of spectral methods 
to problems of aerodynamic and fluid mechanic interest are then outlined, followed by a discussion of the 
problem areas in spectral methods and the current research under way to overcome these difficulties. 
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INTRODUCTION 

Spectral methods may be viewed as an extreme development of the class of discretization schemes 
known by the generic name of the method of weighted residuals (MWR).’ The key elements of the 
MWR are the trial functions (also called the expansion or approximating functions) and the test 
functions (also known as weight functions). The trial functions are used as the basis functions for a 
truncated series expansion of the solution, which, when substituted into the differential equation, 
produces the residual. The test functions are used to enforce the minimization of the residual. 

The choice of trial function is what distinguishes the spectral methods from the finite-element 
and finite-difference methods. The trial functions for spectral methods are infinitely differentiable 
global functions. (Typically they are tensor products of the eigenfunctions of singular Strum- 
Liouville problems.) In the case of finite-element methods, the domain is divided into small 
elements and a trial function is specified in each element. The trial functions are thus local in 
character and well suited for handling complex geometries. The finite-difference trial functions are 
likewise local. 

The choice of test function distinguishes between the Galerkin, collocation and tau approaches. 
In the Galerkin approach, the test functions are the same as the trial functions; whereas, in the 
collocation approach, the test functions are translated Dirac delta functions. In other words, the 
Galerkin approach is equivalent to a least-squares approximation, whereas the collocation 
approach requires the differential equation to be satisfied exactly at the collocation points. Spectral 
tau methods are close to Galerkin methods but they differ in the treatment of boundary conditions. 

The collocation approach is the simplest of the MWR, and appears to have been first used by 
Slater’ in his study of electronic energy bands in metals. A few years later, Barta3 applied this 

*Based on an invited lecture. 



1160 C .  L. STREETT 

method to the problem of the torsion of a square prism. Frazer et aL4 developed it as a general 
method for solving ordinary differential equations. They used a variety of trial functions and an 
arbitrary distribution of collocation points. The work of Lanczos' established for the first time that 
a proper choice of trial functions and distribution of collocation points is crucial to the accuracy of 
the solution. Perhaps he should be credited with laying down the foundation of the orthogonal 
collocation method. This method was revived by Clenshaw,6 Clenshaw and Norton7 and Wright.* 
These studies involved application of Chebyshev polynomial expansions to initial-value problems. 
Villadsen and Stewart' developed this method for boundary-value problems. 

The earliest investigations of the spectral collocation method to partial differential equations 
were those of Kreiss and Oliger" (who called it the Fourier method) and Orszag' ' (who termed it 
pseudospectral). This approach is especially attractive because of the ease with which it can be 
applied to variable coefficient and even non-linear problems. The essential details will be furnished 
below. 

The Galerkin approach is perhaps the most aesthetically pleasing of the MWR since the trial 
functions and the test functions are the same. Indeed, the first serious application of spectral methods 
to PDEs-that of Silberman' for meteorological modelling-used the Galerkin approach. 
However, spectral Galerkin methods only became practical for high-resolution calculations of 
non-linear problems after Orszag13 and Eliasen et a l l 4  developed a transform method for 
evaluating convolution sums arising from quadratic non-linearities. Even in this case, spectral 
collocation methods retain a factor of two in speed. For more complicated non-linear terms, high- 
resolution spectral Galerkin methods are still impractical. 

The tau approach is the most difficult to rationalize within the context of the MWR. Lanczos' 
developed the spectral tau method as a modification of the Galerkin method for problems with 
non-periodic boundary conditions. Although it too is difficult to apply to non-linear problems, it 
has proven quite useful for constant-coefficient problems or subproblems, e.g. for semi-implicit 
time-stepping algorithms. 

In the following discussion of the application of spectral methods to the solution of PDEs, 
rigorous mathematical detail will be avoided. Rather, emphasis will be given to the practical 
aspects of their implementation to solution of realistic problems. A few details on the fundamentals 
of spectral discretization will be given, and their performance on various test problems will be 
shown. Next, a number of solution schemes which have found utility in applications of spectral 
methods to practical problems will be discussed. Results from a few of the successful applications of 
spectral methods to problems of aerodynamic and fluid mechanics interest will then be outlined, 
followed by a discussion of the problem areas in spectral methods and the current research 
underway to ovecome these difficulties. 

FUNDAMENTALS 

In this section, some classical aspects of spectral methods are laid out; References 1 and 5 are used 
here as a guide. 

Consider a function U(x) ,  where U ( x )  E Cm(m > 1) and is 27c-periodic. The trigonometric sum 
U,(x), which interpolates U ( x )  on 2n evenly spaced points in [O, 2x1, is given by 

for 
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where the coefficients are established by 
12n-1 

n j = o  
12n-1 O d k G n ,  

n j z 0  

ak=- 1 U(xj)coskxj, 

b k = -  1 U(xj)sinkxj. 

The formulae for the coefficients ak and bk are simple, since the functions cos kx and sin kx are 
discretely orthogonal on the { xj>: 

r # s, 
1 cosrxjcossxj= 

2n, r = s  =O,n,  

2n- 1 

j = O  (3) 

r # r, 
1 sinrxjsinsxj= n, n > r = s > O ,  i" 2n, r = s =O,n.  

Zn- 1 

j = O  

It can be shown by a simple integration-by-parts argument1* that, for m > 1, the error in this 
approximation is 

Note that the power of l / n  in equation (4), which is generally known in numerical methods as the 
'order' of the fit, is not a constant inherent to the method, but is tied directly to the smoothness of 
the function being fit. This is different from the use of local polynomials to interpolate a function, 
where the order of the fit is related to the order of the polynomial used. (Finite-difference 
representations may be thought of as being derived from local polynomial interpolations.) Thus, 
for the trigonometric interpolation, if U(X)EC", then U,(x) approaches U(x) everywhere faster 
than any (finite) power of l/n. This is termed 'exponential' or 'infinite-order' accuracy; the latter 
term is unfortunate, since many confuse the term 'infinite-order accuracy' with 'infinite accuracy', 
which certainly is not implied. 

Recall that for a function to be periodic and C", the right and left limits of the function and every 
derivative exist and are equal at every point, including the endpoints of the period, which are 
essentially the same point. Thus, if a function is C" in [O,  2711, but only the functional values and no 
higher derivatives are equal at the endpoints, then the function considered as being 2n-periodic 
is only Co. Convergence of a trigonometric interpolation, then, would be quite slow, e.g. less 
than first order. Thus, if an exponential-order interpolation of a function with arbitrary end 
conditions is required, the interpolation must be singular in some sense. For instance, consider 
a non-periodic function V(y)€Cm on [ - 1,1]. Define a new independent variable 

4 = cos-'y (5 )  

F(4(Y)) = V(Y), YE[- 1911. (6) 

t ( 4 )  = W O S  41, 4 4 3 ,  711. (7) 

and a new function v(4) such that 

The function v is then defined on 4~[0,7t]. Equation (6) may be rewritten as 
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V(4)  = V'(cos 4)( - sin 4), 
p ( 4 )  = I/"'(cos +)( - sin3b) + 3V"(cos ~ ) ( C O S  4 sin 4) + I/'(cos 4)(sin 4), etc. (8) 

Therefore, if VEC",  then is C" and half-periodic on [O,n]. A trigonometric interpolation 
V,(y) involving only 'cosine' terms is applicable to such a function; i.e. 

=-+ a0 c ajcos(jcos-'y). 
2 j = 1  

An error bound on Vn(y) similar in form to equation (4) may be found. 

corresponding to the evenly spaced d j :  
The 'singularity' of this interpolation is seen in the distribution of interpolation points y j  

Since dy/d& = 0 at 4 = 0, n, the node points y j  pack near the boundaries y = - 1 and 1; this 
'packing' serves to overpower the slow convergence of the interpolation near the boundaries. 

The interpolation V,(y) generated by the change of variables artifice in equation (6)  may be 
interpreted differently. The points yj from equation (4) are seen to be the zeros of the (n + 1)th 
Chebyshev polynomial T,, (y), where the Chebyshev polynomials are defined by 

T,(y) = F"') cos (n cos- y). (1 1) 
Thus, the trigonometric interpolation from equation (9) is identical with an interpolatory series in 
Chebyshev polynomials. This shows that a Chebyshev series also exhibits exponential 
convergence. 

The construction of an approximation series may be looked at from another viewpoint which is 
useful in the utilization of other basis functions, i.e. Legendre polynomials. Represent an n-term 
approximating series for a function W(z) as 

where the { B j ( z ) }  are the set of basis functions and the c j  the series coefficients representing W(z). 
The approximating series may be defined by requiring that the L2-norm of the error, with weight 
function w(z), 

II W(Z) - Wn(z)IIg w(z)(W(z) - Wn(Z))' dz, (13) s: 
be a minimum. For a particular choice of {Bj(z)}, define the function of { t j } :  

P b  / \ 2  

Minimization of Y with respect to {t j }  then yields the desired coefficients { c j } .  Now, at the 
minimum of Y, the coefficients { t j }  must satisfy 
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=0,  j =  1,2 ,..., n, 

which yields 

ci w(z)Bi(z)Bj(z) dz = w(z) W(z) Bj(z) dz, j = 1,2,. . . , n. 
i = l  (1 s: 

If the basis functions {Bi} are orthogonal with respect to this inner product, e.g. 

lab w(z)Bi(z)Bj(z) dz = 0, i # j ,  

c j =  jabw(z)W(z)Bj(z)dz w(z)BjZ(z)dz, j =  1,2 ,..., n .  (18) is: 

(17) 

then 

For this approximation-series construction technique to be useful in this context, the integrals in 
equation (18) above must be approximated by finite weighted sums of values of the integrand at 
specific collocation points. The Gauss-Lobatto formI6 is usually used, as this form includes the 
endpoints of the interval in the weighted sum. Sobolev space arguments confirm exponential-order 
convergence for these approximation series, for Chebyshev or Legendre basis functions. l7 

In order to use the above series representations in the context of solution of differential 
equations, an operator which approximates differentiation must be developed. Represent 
schematically an interpolation series for a function W(z) as before as 

where the { Bj(z)} are the set of basis functions and the cj  the series coefficients representing W. If 
W(z) is periodic, then sines and cosines are natural basis functions; if general end conditions are to 
be met, then the Chebyshev polynomials may be used as basis functions. The coefficients c j  are 
evaluated from convolution sums in either case; these sums involve the values of W at the set of 
interpolation or ‘collocation’ points, { zj}. Note then that 

n 
Wk(Z) = 1 cjB;(z), 

j =  1 

i.e. that the derivative of the interpolation series involves the derivatives of the basis functions; the 
coefficients cj are not affected. 

The error bound I W’(z) - Wn(z) I is obvious from equation 4; indeed, if W(z) is analytic, then the 
series W;(z) will exhibit exponential-order convergence to W(z). 

A specific form for the derivatives of the basis functions Bi(z) must be found. To accomplish this, 
represent Bi(z) as a series 

Bi(z) = 2 djkBk(z). (21) 
k =  1 

The coefficients djk may be considered as elements of an operator D which approximates the 
derivative of the set of basis functions as a series of the basis functions. Therefore. 



1164 

This may be rewritten as 
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by manipulating the nested series; the e,  are thus the coefficients of the series in B,(z) representing 

The techniques for utilizing these high-order representations of a function and its derivative in 
numerical solution of a differential equation were briefly described in the Introduction. The 
collocation method, wherein the approximation polynomial is required to satisfy the differential 
equation exactly at the collocation points (the quadrature points of the discrete approximation to 
equation (1 8), is the most often used for a number of reasons. First, non-linearities are formulated in 
a straightforward manner, using the function and its derivatives directly in the ‘physical’ space 
rather than formulated in difficult convolution sums in the ‘coefficient’ space. Similarly, boundary 
conditions may be directly and straightforwardly implemented, as the usual choice of collocation 
points includes the boundary points at which conditions must be set. Second, a number of efficient 
solution schemes are suggested by the pointwise physical space representation, as will be discussed 
in the fourth section. Finally, model problem results indicate an accuracy advantage of collocation 
over the Galerkin and tau methods. For these reasons, the following discussions will be restricted 
to the implementation of the collocation technique. 

W’(Z). 

MODEL PROBLEM RESULTS 

In this section, a number of model problems are discretized using spectral collocation techniques; 
comparison with corresponding finite-difference results shows the accuracy of this method. 

The first example is provided by the model problem 

u, + u, = 0,  (24) 
with periodic boundary conditions on [0,2n] and the initial condition 

u(x,  0) = sin (n cos x) . 
The exact solution is 

u(x, t )  = sin [TC cos (x - t)n] . (25) 
Equation (24) was discretized in the x-direction using Fourier series, which is a natural choice for a 
periodic problem, and using second- and fourth-order finite differences. The time-advancement 
scheme was a classical fourth-order Runge-Kutta; the time step was taken so small for these 
comparisons that time-discretization errors were negligible. Shown in Table I are the maximum 

Table I. Maximum error for a 1-D periodic problem 

N Fourier Second-order Fourth-order 
spectral finite finite 

difference difference 

8 1.62 ( -  1) 1 .11  (0) 9.62 ( -  1) 
16 4.97 ( - 4 )  6.13 ( -  1)  2.36 (- 1 )  
32 1.03 ( -  11)  1.99 (- 1) 2.67 (- 2) 
64 9.55 ( - 12) 5.42 (- 2) 1.85 (- 3 )  

128 1.37 (- 2) 1.18 (-4) 
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errors at t = 1 for the various discretization methods. Because the solution is infinitely smooth, the 
error estimate of the Fundamentals section indicates that the spectral method should converge 
faster than any power of 1/N, indeed, this behaviour is seen. Note that the error for the N = 64 
spectral result is so small that it is affected by the machine round-off error (single precision on a 
CDC CYBER 175). In most practical applications, the benefit of the spectral method is not the 
extraordinary accuracy available for large N, but rather the small size of N necessary for a 
moderately accurate solution. 

To illustrate the use of Chebyshev spectral discretization, boundary and initial conditions were 
chosen so that 

(26) 
was a solution of equation (24). Time discretization was the same as in the first problem. Shown in 
Table I1 are the results for Chebyshev and second-order finite-difference discretizations. Also 
included is discretization by Fourier series, which is inappropriate for this non-periodic problem. 
The Chebyshev spectral method shows the expected exponential-order convergence, where the 
error of the Fourier discretization remains O( 1). 

u(x, t) = sin an(x - t) 

The final model problem example is that of Laplace's equation 

u,, + uyy = 0 (27) 
on [ - 1,1] x [ - 1,1], with boundary conditions 

nY 
2 

u(x, - 1) = u(x, 1) = u( - 1,y) = 0,  u(1, y) = cos-. 

Shown in Table I11 are the maximum errors from Chebyshev and second-order finite-difference 
discretizations of this problem. Again, the exponential-order convergence of the spectral method is 
apparent. 

Table 11. Maximum error for a 1-D Dirichlet problem 

N Chebyshev Fourier Finite 
spectral spectral difference 

4 1.49 (0) 1.85 (0) 1.64 (0) 
8 6.92 (- 1) 1.92 (0) 1.73 (0) 

16 1.50 (-4) 2.27 (0) 1.23 (0) 
32 3.45 ( -  1 1 )  2.28 (0) 3.34 (- 1) 
64 9.55 (- 1 1 )  2.27 (0) 8.44 (- 2) 

Table 111. Maximum error for Laplace 
equation problem 

N Chebyshev Finite 
spectral difference 

7 1.35 (-5)  9.15 ( -3 )  
9 8.84 (-8) 5.54 ( - 3 )  

1 1  4.02 ( -  10) 3.48 ( -3 )  
13 1.31 ( -  12) 1.50 ( -3 )  
16 1.31 (- 12) 1.10 (- 3) 
20 6.81 (-4) 
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SOLUTION SCHEMES FOR SPECTRAL DISCRETIZATIONS 

Efficient solution of the equations from spectral discretizations is essential if the high-order 
accuracy of these methods is to be realized in practice. Direct solution of these equations is rarely 
feasible, thus iterative techniques are required. As a consequence of the ability of spectral methods 
to capture accurately a wide bandwidth of information, the eigenvalue spread of a spectral 
operator is large, typically of the order of the square of a corresponding low-order finite-difference 
operator. Therefore, an explicit method would converge quite slowly and the convergence rate 
would deteriorate very rapidly with mesh refinement. Implicit methods are not efficient, since 
spectral operators are full rather than banded as in the case of finite difference. 

An alternative to pure explicit iterative schemes is a preconditioned scheme, where explicit 
iteration of some form is driven not by the spectral residual, but by the residual obtained after some 
processing is applied to reduce its eigenvalue spread. As will be shown later, this process can also be 
thought of as an approximate implicit scheme, which can give some insight into a relevant 
preconditioning operator. 

Preconditioned iteration schemes for spectral collocation discretization of second-order 
equations are well known and proven. For instance, the time-accurate incompressible Navier- 
Stokes simulations of certain fluid mechanical phenomena, in which Chebyshev collocation is used 
in two co-ordinate directions, require the solution of a number of Helmholtz or Poisson equations 
per time step.'* The preconditioning operator for these second-order equations is the low-order 
central finite-difference operator, using the Chebyshev collocation points as its mesh. O r ~ z a g ' ~  
originally suggested such preconditioning and provided some analysis for the case of Fourier 
discretization. Included here are some results which indicate the efficiency of this technique for 
Chebyshev discretizations. 

The steady-state compressible Euler or Navier-Stokes equations at high Reynolds numbers, 
however, are advection dominated. A spectral solution technique for such equations must 
therefore deal with operators which are predominantly first order. Application of preconditioning 
equivalent to that used for second derivatives will not work, however. Elementary analysis of 
preconditioning first-order Fourier discretization with central finite difference on the collocation 
mesh indicates that the convergence rate of such a scheme would be unacceptable; the eigenvalue 
spread of this preconditioned operator is unbounded. A similar situation appears in the case of 
Chebyshev discretization, as will be shown here. 

A preconditioning scheme for first-order Chebyshev collocation operators is proposed herein, in 
which the central finite-difference mesh is finer than the collocation mesh.20 Details of the proper 
techinques for transferring information between the meshes are given, and the scheme is analysed 
by examination of the eigenvalue spectra of the preconditioned operators. 

Consider the following linear equation: 

Lspu = f (28) 
where the operator L,, is derived from spectral collocation of a differential equation. An iterative 
scheme is to be used to solve this equation. Given a current estimate of the solution U" at iterate 'n', a 
simple Richardson iteration scheme for computing a better estimate u"" is 

(29) 
where the scalar relaxation factor o may be chosen either experimentally or via a requirement that 
some norm of the residual 

U n + l -  - u n - o(Lspu" - f ) ,  

R" = L,,,u" - f (30) 
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be minimized at each step. Rewriting the scheme (29) as 

(31) u"+' - u" = AM" = - oR" 

shows the explicit nature of this iteration. Preconditioning involves choosing an operator M which 
is more easily invertible than Lsp, and for which the scheme 

AM" = - wM-'R" (32) 

converges more rapidly than the scheme (3 1). The convergence rate of such schemes is quantified in 
the following way. Expand (32) as 

u"+ = ( I  - U M  - L,,) U" - W M  - If, (33) 
where I is the identity operator. Subtracting the discrete solution to equation (28) (the desired 
solution u) from both sides of (33), and adding to the right-hand side 

o M  - (L,,u - f) , (34) 
which is equal to zero by (28), yields an equation for the discrete error: 

(un+l - U ) = ( I - C O M - ~ L ~ , ) ( U ~ - U ) .  (35) 

(36) 

For the preconditioner scheme (32) to be convergent, all norms of u" - u must decrease; thus, 

11 I = oM-'L,,  1 1  < 1 

is required. Given a preconditioning operator M ,  the relaxation factor o is used to satisfy 
equation (36). 

From equation (36) may be seen what constitutes an effective preconditioner: if the eignevalues of 
M-'L,, are clustered in a unit circle centred at 1 in the complex plane, then all error components 
will converge at nearly the same rate, and an optimal o may be chosen which will yield rapid 
convergence. A slow scheme is characterized by a wide spread of eigenvalues from such a clustered 
pattern. 

As an aside, a preconditioned iteration scheme may be looked at as an approximate implicit 
scheme in the following way. Ideally, given an estimate u", one wants the residual at the next iterate 
to be zero; expand 

or 
R" + ' = L,,(u" + AM") - f = 0 

L,$u = - R". 

(37) 

(38) 
However, L,, is dificult to invert; approximate it on the left by a more easily inverted operator 
o - ' M ,  giving 

AM" = - w M - ' R " ,  (39) 
which is identical to equation (32). Thus, the better o - ' M  approximates Lsp, the faster the scheme 
will converge. 

The inverse of the preconditioning operator may be obtained and used directly, as implied by 
equation (32), or the preconditioning equation 

MAu" = - oR" (40) 
may be inverted iteratively. This procedure is beneficial when the spectral operator L,, is non- 
linear, necessitating a different operator M at each iterate, or when M is still expensive to invert. An 
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example of the latter case is when equation (28) results from spectral discretization of a PDE in two 
or more dimensions. The corresponding finite-difference discretization operator works well as a 
preconditioner (with the modifications described in the next section for first-order operators), but 
may still be expensive to invert due to its size. An iterative technique for computing the Au" is more 
efficient than direct inversion for this case, using, for instance, an approximate-factorization 
scheme (equation (32)) to converge rapidly. 

As stated earlier, preconditioning of second-order equations is relatively easy. Use of second- 
order central finite-difference operators, defined directly on the collocation points using unequal 
mesh formulae, gives excellent performance for iterative solution. The eigenvalues of the 
preconditioned operator remain real and are positive and bounded with the number of modes. To 
illustrate this, the maximum eigenvalues of the Chebyshev second-order operator with Dirichlet 
boundary conditions imposed, with and without this finite-difference preconditioning, are shown 
in Table IV. Note that as this norm of L,, alone goes like N4, it remains bounded for the 
preconditioned operator. 

This fortuitous circumstance does not carry over for first-order operators, however. A simple 
example will show why preconditioning using central finite differences on the collocation mesh is 
inadequate. For the model scalar problem U ,  = f with periodic boundary conditions on [0,27c], 
the eigenvalues of the Fourier collocation operator a/ax are ia Ax, where a is the wavenumber 
and Ax is the constant collocation mesh spacing. The product a A x  falls in the range 
0 < la Ax1 < n. The corresponding eigenvalues for the central difference operator are 
i.sin(aAx). Note that as a A x + n ,  the ratio of these eigenvalues is unbounded. This ratio 
corresponds to the eigenvalues of the preconditioned operator, denoted M -  L,, in the previous 
section. Such a preconditioned scheme is thus unconditionally unstable, with unbounded growth 
of the highest-wavenumber error components. The use of a finite Preconditioning grid averts 
this unbounded component by introducing some natural dissipation in the preconditioner at 
the highest wavenumber of the spectral operator. 

Because of the difference between the spectral and preconditioner meshes, a scheme is needed for 
transferring information between them. In multigrid terminology, a prolongation operator is 
needed to transfer the spectral residual, which acts as the source term of the preconditioning 
equation (40), and a restriction operator is needed to compute the solution updates on the spectral 
mesh. Naturally, it is desirable to transfer as much information as possible from the spectral 
residual to the preconditioning equation; spectral interpolation is therefore used for the 
prolongation operator. In the restriction operation, however, aliasing of correction components, 
with wavenumber higher than that of the spectral mesh, must be avoided. Therefore, spectral 
restriction cannot be used; low-order Lagrange interpolation is used here. 

The preconditioning scheme proposed here proceeds as follows for the spectral discretization of 
a simple model problem U ,  = f At each iterate, compute the residual (equation (30)) defined on 

Table IV. Maximum eigenvalues of 
second-order Chebyshev-Dirichlet 
operator, without and with precondi- 

tioning 

9 02144x lo3 2.1314 
17 0.3175 x lo4 2.3058 
33 04994x 105 2.3884 
45 0.1780 x lo6 2.4103 
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N,, points in the domain. This information is transferred to the (finer) preconditioning mesh via the 
spectral interpolation operator I::. Denoting 

R” = IFF R, (41) 
the preconditioning equation becomes 

G A u = ~ ,  

where Au is the update on the preconditioning mesh. For the model problem U ,  = f in 
XE[ - 1,l) considered here, the preconditioner fi must approximate the first derivative 
operator via central finite differences. One possibility is - 

M = 6: - ~ 6 : ~  (43) 
using standard divided-difference notation. The second-difference term is required to avert the 
odd-even uncoupling of the pure central first-difference operator and to aid in its inversion. Some 
type of artificial viscosity is essentially always required when inverting this type of operator. Note 
that this artificial viscosity does not affect the spectral solution, being confined to the 
preconditioner. 

The final step of this preconditioning scheme is to carry the update information to the spectral 
mesh. The iterate thus concludes with 

and 
AU = BD AU 

, y + l -  - u  n + o A u ,  (44) 
where the operator BD uses low-order Lagrange interpolation. For analysis purposes, the above 
sequence may be collected into a single operator 

(45) M - 1  =pp f i - 1 1 ~ ~  
FD SP . 

This is, in effect, the preconditioning operator applied in the above scheme. 
In practice, on a real problem of interest, the finite-difference operator M is also too large to 

invert directly at reasonable cost. Preconditioning operators are therefore inverted iteratively in all 
but the simplest one-dimensional test problems. Experience with both first- and second-order 
operators indicates that full machine-zero convergence of this iterative inversion is not necessary; 
depending on the nature of the iterative scheme, only two-orders-of-magnitude reduction in the 
residual of the preconditioner is necessary to obtain convergence of the overall scheme. 

To investigate the effectiveness of the above preconditioning scheme, the eigenvalues of the 
operator M - ’ L , ,  were computed for a number of combinations of N,,  and N,, for the model 
problem 

U, = sinm, XE[ - 1,1], (46) 
U (  - 1) = 0. 

Some basic characteristics of the eigenvalue spectra for this problem are as follows. The 
eigenvalues of spectral operator L,, alone are dominantly imaginary, with the magnitude of 
the largest growing as N,6. When the spectral operator is preconditioned with the central 
finite-difference operator on the same mesh, the eigenvalues of the overall operator 
become dominantly real, which is a desirable feature for use in an iterative scheme. The 
real parts of these eigenvalues are all positive, the smallest being near 1 and the largest of the order 
of 50 for the grids investigated. The eigenvector associated with this largest eigenvalue is highly 
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oscillatory, as expected from the discussion in the previous section. As N F D  is increased relative to 
Nsp, this eigenvalue pattern generally collapses onto the point (1,O) in the complex plane, with both 
real and imaginary parts decreasing. This collapse is at first rapid as N F D  is increased from Nsp, then 
slows as the eigenvalue with the largest real part moves to the interior of the unit circle centred at 1. 
There is a single exception tothis clustered pattern, that of a small (O(O.1)) eigenvalue which 
remains essentially fixed for all N F D  < N,,. Its eigenvector indicates that this eigenvalue is 
associated with the different conditions used at x = 1 by M and L,,. In general, though, the 
eigenvalues of the preconditioned operator are strongly clustered; thus one would expect rapid 
convergence of the iterative scheme. 

In Table V are shown the maximum and minimum eigenvalues for the preconditioned operator 
from the test problem described above, for various combinations of N, ,  and N F D .  The range of N,,  
considered covers what we expect to be required in spectral discretizations of practical 
aerodynamic problems. As can be seen, the maximum eigenvalue is large when N,,  = N,,  and 
drops rapidly as N F D  is increased. The operator appears well conditioned; that is, the eigenvalues 
are tightly grouped inside the unit circle centred at 1, when N,,  2 1.5N,, for all of the grids 
considered. The spectra for N F D = N s p ,  1.2NS, and 1.5N,, are also shown in Figures 1 and 2 
for N,,  = 45 and 60. These results were produced with first-order Lagrange interpolation in the 
restriction operator and with the artificial viscosity coefficient used in M fixed at lop3. Virtually 
identical results were obtained for E = 

Convergence of preconditioned iteration schemes may be accelerated by a number of means. 
One powerful technique is multigrid. This technique has been extensively developed for finite- 
difference and finite-element discretizationsz1 and has recently been applied to spectral discretiz- 
a t i o n ~ . ~ ~ - ~ ~  Briefly put, multigrid methods take advantage of a property shared by a wide variety 
of relaxation schemes-potential efficient reduction of the high-frequency error components, but 
unavoidable slow reduction of the low-frequency components. 

Let us consider just the interplay between two grids. A general, non-linear fine-grid problem can 
be written 

and for second-order restriction. 

Table V. Maximum and minimum eigenvalues for 
various Nsp, NF, preconditioning equation (46) 

(real, imaginary parts) 

9 9  
14 
18 

17 17 
21 
26 
34 

33 33 
40 
55 
66 

45 45 
54 
68 
75 

21.48, 0.0 
1.208, & 0.046 
1.054, k 0.018 

47.46, 0.0 
2.233, 0.0 
1.364, 0.0 
1.136, 0 0  

56.28, 0.0 
2.178, 0 0  
1.365, 0.013 
1.348, 0.0 

37.42, 0.0 
2.456, 00 
1.53, 0.0 
1.390, k 0.062 

1, 0-0 
0.339, f 0.310 
0.173, 0.0 

1 0.0 
0.276, 00  
0.218, 0.0 
0.082, 0.0 
1, 00  
0097, 0.0 
0.056, 0.0 
0.049, 0.0 

1, * 0.002 
0.073, 0.0 
0.049, 0.0 
0.045, 0.0 
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Figure 1 .  Eigenvalue spectrum of Chebyshev first-order operator, preconditioned with central finite 
differences, N,, = 45; (a) NFD = N,,, (b) N F D  = 1.2 N,,, (c) N F D  = 1.5 N , ,  
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Figure 2. Eigenvalue spectrum of Chebyshev first-order operator, preconditioned with central finite 
differences, N,,  = 60; (a) N F D  = N,,, (b) N F D  = 1.2 N,,, (c) NFD = 1.5 N,,  
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Lf(U') = F'. (47) 
occurs after the fine-grid approximation V' has been sufficiently 
process, i.e. after the high-frequency content of the error V'-  Uf 
.. The related coarse-grid problem is 

The shift to the coarse grid 
smoothed by the relaxation 
has been sufficiently reduced 

where 
LC(UC) = F", 

F" = R(Ff - Lf( Vf)) + L"(R Vf). 

(48) 

(49) 
The restriction operator R interpolates a function from the fine grid to the coarse grid. The coarse- 
grid operator and solution are denoted by L' and U" respectively. After an adequate 
approximation V" to the coarse-grid problem has been obtained, the fine-grid approximation is 
corrected via 

v'e V f + P ( V " - R V ' ) .  (50) 

The prolongation operator P interpolates a function from the coarse grid to the fine grid. 
A complete multigrid algorithm requires specific choices of the interpolation operators, the 

coarse-grid operators and the relaxation schemes. These issues are discussed at length in 
References 22-24 for both Fourier and Chebyshev multigrid methods. Numerous linear, variable- 
coefficient examples are also provided there. What basically has been concluded about spectral 
multigrid techniques is that extraordinary acceleration of convergence may be achieved, even 
for difficult problems,24 but at the expense of fairly high overhead in the algorithm. Also, spectral 
multigrid tends to be more sensitive to the proper transfer of information between grids than for a 
corresponding finite-difference multigrid algorithm, and non-Dirichlet boundary conditions have 
a serious impact on convergence. 

A somewhat more robust acceleration technique is based on dynamically choosing an 'optimum' 
relaxation parameter, e.g. w in equation (29). Two techniques have been used with considerable 
success. The first is based on requiring that the residual at the ( n  + 1)th time level be minimum with 
respect to an L2 inner product. This leads to a preconditioned scheme of the form 

Au"+l = -MM1((Lsp~n- f )=M- lR",  (5  1) 

d"' ' = wnM+R' = (R", L,, Au"' ')(I!,,, Au"' ', L,, Au""). 

(52) 
where 

(53) 
A second choice for w" + comes from requiring that the residual at the new time level ( n  + 1) be 
orthogonal to R" under this inner product, i.e. 

(54) 

u"+l  =nn+wn+lAU"+I,  

a;)+' = (R", R") (R", L,,An"+'). 

The subscripts 'MR' and 'OR' in equations (53) and (54) stand for 'minimum residual' and 
'orthogonal residual' respectively. For linear problems, these algorithms can be formulated so as to 
require no more evaluations of LSpu than a standard preconditioned iteration scheme. The 
minimum-residual scheme has been found to be slightly faster than the orthogonal-residual 
scheme for problems with smooth solutions. It has the tendency to 'fall asleep,' however, and not 
converge for more oscillatory problems; the orthogonal-residual scheme is more robust for such 
problems. In practice, both methods can achieve order-of-magnitude reductions in residual per 
iteration for Chebyshev-discretized Poission equations. 
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APPLICATIONS 

In this section, a few representative examples of the successful applications of spectral methods to 
aerodynamic and fluid mechanic problems will be given. The first example involves solution of the 
full-potential equations for subsonic or transonic flow about an arbitrary lifting airfoil. The aspects 
of geometric complexity, requirement of a fast solution scheme, and the appearance of 
discontinuous weak solutions had to be dealt with in this work. Solution of the boundary-layer 
equations will be outlined next. Accurate and fast solution schemes were devised for versions of the 
boundary-layer equations from the Blasius form to the two-dimensional inverse form for 
computing weakly separated boundary layers. The final application to be described involves 
solution of the incompressible Navier-Stokes equations. The particular algorithm to be outlined 
here will be shown in the context of predicting the Taylor-Couette vortex flow in a finite-length 
geometry. 

In the discretization of the potential equation, the first step is to define a reduced potential by 
substracting freestream and boundary surface terms from the total potential function to allow the 
use of homogeneous boundary conditions. After a conformal mapping that transfers the airfoil 
shape to a circle, the potential equation becomes 

A( R P E )  + A( ;g) = 0, (55) 

where G is the reduced potential, R and 0 are the computational polar co-ordinates and p is the 
fluid density. The reduced potential is periodic in 0 and satisfies 

dGfaR = 0 at R = 1, (56) 

G+O as R + w ,  (57) 

and the Kutta condition. The density is given by the isentropic relation 

where the ratio of specific heats is denoted by y and M ,  is the Mach number at infinity. The velocity 
components in the physical (r, 0) plane are 

and the Jacobian between the complex physical plane ( z  = reie) and the complex computational 
plane (a = Rei*) is 

h = l$l. 
The mapping is numerically generated via a Fourier series. Further details are provided in 
Reference 25. 

The spectral method employs a Fourier series representation in 0. Constant grid spacing in 0 
corresponds to a convenient dense spacing in the physical plane at the leading and trailing edges. 
The domain in R (with a large, but finite outer cut-off) is mapped onto the standard Chebyshev 
domain [ - 1,1] by an analytical stretching transformation that clusters the collocation points 
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Figure 3. Surface pressure coefficient distribution about NACA0012 airfoil; subcritical test case, spectral 

solution (symbols) versus FL036 (full curve) 

near the airfoil surface. The stretching is so severe that the ratio of the largest-to-smallest radial 
intervals is typically greater than 1000. 

The flow past an NACAOO12 airfoil at 4" angle of attack and a freestream Mach number of 0.5 is a 
challenging subsonic and thus elliptic case. Nevertheless, the spectral solution on a relatively 
coarse grid captures all the essential details of the flow. The surface pressure coefficient from the 
spectral code AFSPz4, using 16 points in the radial (R)  direction and 32 points in the azimuthal (0) 
direction, is displayed in Figure 3. The symbols denote the solution at the collocation points. For 
comparison, the result from the finite-difference, multigrid, approximate-factorization code 
FL03626 is shown as a full curve. The grid used in the benchmark finite-difference calculation is so 
fine (64 x 384 points) that the truncation error is well below plotting accuracy. The FL036 and 
AFSP results are identical to plotting accuracy. The spectral computation on this mesh yields a lift 
coefficient with truncation error less than Spectral solutions on a 16 x 32 grid are thus of 
more than adequate resolution and accuracy for subsonic flows. 

The truncation error of the spectral solution decays rapidly with mesh refinement. In Figure 4 is 
shown the error in the lift coefficient predicted by the spectral method (AFSP) against the average 
mesh spacing in the computational plane, as compared to results from FL036. The full curves 
indicate the relative error of a second-order method, with the same accuracy as each method on its 
finest mesh. The superior accuracy of the spectral solution is not surprising, as the solution is 
smooth. 

In Figure 5 are shown convergence histories from FL036, the multigrid spectral code MGAFSP 
and the finite-difference, approximate-factorization, single-grid code TAIRz7. Meshes which yield 
approximately equivalent accuracy were chosen. The surface pressure results are the same to 
plotting accuracy, the lift coefficient is converged in the third decimal place and the predicted drag 
coefficient is less than 0.001. (Actually, the spectral result is an order of magnitude more accurate 
than these limits, but the TAIR result barely meets them.) Figure 6 demonstrates the improvement 
produced by the spectral multigrid scheme over the spectral single-grid method (AFSP). There is 
well over an order-of-magnitude gain in efficiency. 
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Figure 4. Relative error in lift versus average mesh spacing in computational plane; subcritical test case, 
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Figure 5. History of maximum residual versus machine time; subcritical test case, spectral multigrid and 
finite-difference methods 

The potential flow problem is much more difficult whenever the flow field contains both 
supersonic (hyperbolic) and subsonic (elliptic) regions. Nevertheless, the spectral multigrid 
algorithm that succeeded for the subsonic flow case requires only a minor modification in order to 
succeed for the transonic (mixed) problem as well. 

The most expedient technique for dealing with the mixed elliptic-hyperbolic nature of the 



1176 C. L. STREETT 

0. 

-1. 

log, ,  llrll, 
- 2 .  

-3. 

-4. I 3 GRIDS 

0 20. 40. 60. 80. 

T ( s e c  - CY175) 

Figure 6. History of maximum residual versus machine time; subcritical test case, spectral single-grid and 
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transonic problem is to use the artificial density approach of Hafez et aL2* The original artificial 
density is 

with 

c 

P = P - P d P  

p = max { 0,1- 1/M2}, 

where M is the local Mach number and 6 p  is an upwind first-order undivided) difference. The 
spectral calculations employed a higher-order artificial density formula. The spectral method also 
required a weak filtering technique to deal with some high-frequency oscillations generated by the 
shock. Details are available in Reference 25. 

A lifting transonic case is provided by the NACA0012 airfoil at M ,  = 0.75 and 2" angle of attack. 
A shock appears only on the upper surface for these conditions and is rather strong for a potential 
calculation; the normal Mach number ahead of the shock is about 1.36. Lifting transonic cases are 
especially difficult for spectral methods, since the solution will always have significant content in 
the entire frequency spectrum: the shock populates the highest frequencies of the grid and the lift is 
predominantly on the scale of the entire domain. An iterative scheme therefore must be able to 
damp error components across the spectrum. 

The surface pressure coefficient distribution predicted by the spectral method for this 
supercritical case is shown in Figure 7 for a coarse-grid (16 x 48) solution and a fine-grid (30 x 80) 
solution. Note that the shock location and pre-shock pressure level are computed accurately on the 
coarse grid. The lift from the coarse-grid solution is also accurate to about 2 per cent, an error level 
for which the finite-difference code F L 0 3 6  requires a 32 x 192 grid. 

The application of spectral methods to the solution of the boundary-layer equations involved the 
steady, two-dimensional, incompressible form of the equations, written in Gortler variables. 

Momentum 

a 2 f  a f  a f  -- u- - B( f - 1) - 25 f - = 0 (momentum), 
av2 all a t  
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Figure 7. Surface pressure coefficient distribution about NACA0012 airfoil; supercritical test case: M, = 0-75, a = 2" 

Continuity 

a u  a f  
- + f + 25 - = 0 (continuity). av 85 

Equations (63) and (64) define a parabolic system of equations. The boundary conditions in q are 

f = O  (no slip) 

u = 0 (no transpiration) at q = 0, (65) 
f = 1  as v-'oo. 

The independent variables 5 and q are given in terms of the physical variables x and y by 
f x  

where Ve(x)  is the imposed inviscid edge velocity. The dependent variables f and u are the 
normalized streamwise velocity and stream function respectively: 

where ti and V are the physical velocities in the x- and y-directions respectively. The external 
pressure gradient parameter j? is given by 
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Figure 8. Relative error in skin friction versus number of grid points; Blasius flow, = 0 spectral Chebyshev (0) and 
Legendre (0) methods and fourth-order box scheme (-) 

Both Chebyshev- and Legendre-based collocation discretization were studied,29 to assess their 
relative accuracy. Solution of the resulting equations is by preconditioned Richardson iteration. 
The coupling between the momentum and continuity equations is maintained in the update 
scheme; this was found to be critical for rapid convergence. 

The simplest boundary-layer flow, Blasius flow, is obtained by setting (d/d() and p = O  in 
equations (63) and (64). Figure 8 shows that the error in the displacement thickness predicted by 
the spectral method for the Blasius equations decays far more rapidly with increasing grid points 
than for a fourth-order box scheme. Note also the concave-down shape of the spectral error decay, 
characteristic of exponential-order accuracy. 

The so-called inverse form of the boundary-layer equations30 is useful for computing flows with 
moderate separated regions. In this form, the displacement thickness or skin friction is prescribed, 
rather than the external pressure gradient; the pressure gradient is computed in the solution of the 
equations. This procedure eliminates the Goldstein singularity in skin friction at the separation 
point. For the case shown in Figure 9, the prescribed displacement thickness yields a fairly large 
separated region as indicated by the closed streamlines. For this problem, the accuracy of the 
spectral method was checked by comparing the predicted skin friction at the point 5 = 1.61 
(indicated by the arrow in Figure 9) with the result from a second-order finite-difference code. For 
four-decimal-place accuracy, the spectral method required 40 points in the normal direction and 26 
points in the streamwise direction; the finite-difference method needed 240 and 200 points, 
respectively, to resolve this sensitive flow to four-decimal-place accuracy. Moreover, the spectral 
solution requires only 10 per cent of the CPU time taken by the finite-difference method. 
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Figure 9. Spectral solution of inverse boundary-layer equations for separated flow; (a) streamlines, (b) skin friction 

Most of the current interest in spectral methods stems not from their successful, but limited, 
applications to aerodynamic problems, but from the strides in fluid mechanical simulations which 
they have made possible. The simple geometries for which these simulations have generally been 
carried out and the computational effort required for high-resolution solutions of the time- 
dependent Navier-Stokes equations yields an area tailor-made for the application of spectral 
methods. An extensive review of some of these applications is contained in Reference 31. The 
purpose here is not to provide a comprehensive review of past work, but merely to provide 
illustrative examples of the applications of spectral methods. The simulation of bifurcation of 
states in Taylor-Couette flow’* will serve as such an example, for solution of the incompressible 
Navier-Stokes equations by spectral methods. 

The Taylor experiment on Couette flow between coaxial circular cylinders has been the subject of 
numerous theoretical and experimental ~tudies.~’ This flow is rich in complex phenomena; so rich, 
in fact, that they are still being d i s~ove red ,~~  and our understanding of them is far from complete. In 
a typical Taylor experiment, the inner cylinder rotates with a constant angular velocity while the 
outer cylinder, along with the top and bottom walls, are kept at rest. The relevant geometric 
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parameters are the radius ratio, which is the ratio of the radii of the inner and outer cylinders,and the 
aspect ratio, which is the ratio of the length of the annulus to its width. The dynamic parameter is 
the Reynolds number based on the angular velocity of the inner cylinder and the annulus width. 
The Taylor-Couette flow is strongly dependent on all of these parameters. The purpose of our 
continuing research effort is to solve the unsteady Navier-Stokes equations by a highly accurate 
spectral collocation method with a view to elucidate the underlying processes leading to laminar- 
turbulent transition in the Taylor-Couette flow. The main result of these studies is a second-order 
transition from a two-cell flow, symmetric under reflection about the midplane, to an asymmetric 
single-cell flow that ensues with increasing Reynolds number beyond a certain critical value. 

For these simulations, the incompressible time-dependent Navier-Stokes equations are written 
in conservative form for a cylindrical geometry. No-slip boundary conditions are enforced for all 
radial and axial walls, and periodicity is imposed in the azimuthal direction. The appropriate 
discretizations are, therefore, Chebyshev collocation in the radial and axial (Y, z)  directions and 
Fourier collocation in the azimuthal (0) direction. A splitting scheme is used for the time-accurate 
solution of these discrete equations.’* The splitting used is a two-step process in which the 
momentum equations without pressure terms are advanced to an intermediate time, then 
incompressibility is enforced in an inviscid ‘pressure correction’ step. Boundary conditions must 
be carefully handled in both steps, to ensure stability and accuracy; see Reference 18 for details. 
The momentum equation is advanced in time using a mixed implicit/explicit scheme, with 
low-storage, third-order Runge-Kutta time stepping for the non-linear advection terms and 
Crank-Nicolson on the viscous terms to avoid the severe time-step limitation of an explicit 
method. Preconditioned MR iteration is used to solve the Helmholtz equations which result 
from this time discretization. Additional efficiency is gained by solving these equations in the 
wavenumber space of the Fourier discretization, which effectively decouples the three-dimensional 
equations into a set of planar equations. 

The results presented here pertain to the axisymmetric two-cell/one-cell bifurcation, which 
occurs when the Taylor apparatus has an aspect ratio up to about 1.5. The form of the bifurcation 
depends sensitively on this parameter;  experiment^^^ show that this transition can change from 
supercritical to subcritical with variations in the aspect ratio of as little as 8 per cent. 

Most of the results are obtained either by making quasi-static changes in the Reynolds number 
and allowing the stable, dominant mode to settle, or by slowly sweeping through a Reynolds 
number range, monitoring the change in a particular mode. Of course, using a time-accurate code 
to simulate the bifurcations of steady-state solutions is quite inefficient, owing to the extremely 
small growth rates near the bifurcation points. However, the eventual aim of this work is to 
simulate the turbulence and broadband structure exhibited by Taylor-Couette flow at moderate 
Reynolds numbers; and the code was developed with these time-dependent flows in mind. The 
ability to simulate accurately the sensitive, steady-state bifurcations at lower Reynolds numbers is 
an excellent test for the numerical method. 

Moreover, by using a time-dependent computation to investigate the steady-state bifurcations, 
we can obtain information on the path which the system follows as states exchange stability. This is 
illustrated by the following result. A 17 x 17 grid is used in all these simulations with a few 
calculations on a 25 x 25 mesh for accuracy check. The time step in these simulations corresponds 
to a maximum Courant number of about 0.2; the time step is limited by accuracy and not by 
stability. For the geometry of Benjamin and M ~ l l i n ~ ~  with a radius ratio 0-615 and aspect ratio 
1.05, the symmetric two-cell mode is allowed to stabilize at a relatively low Reynolds number 
(Re=62). The Reynolds number is then raised impulsively to 165, above the experimental 
bifurcation boundary of about 150, and the growth of the one-cell asymmetric mode is observed. 
Random machine round-off error of the order of provides the initial energy for the mode. 



SPECTRAL METHODS 1181 

Figure 10. Growth of order parameter and perturbation energy in finite-length Taylor-Couette flow: r = 1.05, = 0.615, 
Re = 150 

3) 4) 
Figure 11.  Progression of streamlines in crossflow plane, finite-length Taylor-Couette flow 

The order parameter used here to quantify the asymmetry of the mode is due to Lucke et ~ 1 . ~ ~ :  

dr dz(u(r, Z) - U(Y, z)) s (71) 
'=Idrdz(lu(r,z)l + lu(r, -z)l). 
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The integrals were performed by spectral collocation. The logarithm of this parameter is shown 
in Figure 10 plotted against time in units of the diffusion time scale L2/v. As can be seen, the initial 
instability leading to the one-cell mode appears to be linear; that is, exponential growth with time is 
observed, with only the later stages being modulated by non-linear effects. Also shown in Figure 10 
is a plot of the logarithm of the disturbance energy against time. After an initial period, the 
disturbance energy grows at a rate which is within 2 per cent of twice the growth rate of II/, as 
expected. 

Streamlines in a cross-sectional plane at various stages in the two-cell/one-cell exchange are 
shown in Figure 11. The locations of these intermediate states on the $ against time curve are 
indicated in Figure 10. Note that the progression between states is smooth, without abrupt 
collapse or alteration of the flow field structure. 

PROBLEM AREAS AND CURRENT RESEARCH 

The previous section has briefly demonstrated the breadth of applicability of spectral methods. 
There appear to be, however, two major problem areas which somewhat limit the utility of spectral 
methods in aerodynamic problems. The first lies in the requirement that the physical domain, 
however complicated, must be mapped onto a simple computational domain via a global, infinite- 
order smooth mapping. The necessity of high-order smoothness and a global functional 
description of the mapping precludes the use of the many powerful and flexible algebraic grid 
generators which are used in finite-difference and finite-element calculations. One potential 
solution to this problem is to use a so-called ‘elliptic’ or ‘hyperbolic’ grid wherein 
the mapping equations are discretized by an appropriate spectral method. Such a technique 
could be used to map a smooth physical domain onto a computational domain for spectral 
solution. 

However, if there exist geometric discontinuities, or if there are severe resolution requirements in 
an isolated area of the domain, global mapping techniques are inadequate. These dificulties may 
be alleviated by the use of a multi-domain technique, in which the physical domain is split into a 
small number of subdomains which are independently discretized. The individual discretizations 
must be interfaced in such a way as to preserve overall spectral accuracy. 

A number of spectral domain decomposition techniques have appeared in the literature. One 
popular technique is the spectral element m e t h ~ d . ~ ~ . ~ ’  In this technique, discretization in 
individual elements is carried out via a variational statement; for advection-diffusion equations, a 
mixed collocation-Galerkin discretization is resorted to. Since the flexible and rapid solution 
schemes for pure collocation discretizations are inapplicable to such a statement, it appears that 
the number of nodes used per domain is limited in practice in the spectral element method. 

Other spectral multi-domain techniques based on collocation involve an explicit statement of 
continuity of a derivative of the solution across the domain interface. Although adequate in theory, 
these methods in practice can produce a local disturbance near the interface, especially when 
resolution requirements are severe, and when the discretizations of the adjoining domains are 
radically different. Additionally, these techniques require the spectral discretization to include 
boundary points lying on the interface, precluding the use of a staggered mesh. 

The multi-domain technique of Macaraeg and Streett41 does not suffer from these difficulties. In 
this method, a global flux balance statement, generated by an appropriate integration of the 
governing equation, provides the necessary interface relation; see Reference 41 for details. 

The first example of the application of this technique will illustrate the capability of the method 
for resolving very high gradients in a solution, while imposing an interface condition which 
preserves spectral accuracy. Consider the viscous Burgers’ equation 
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U ,  + +(U'), = VU,,, x d -  1 , 1 3 9  

U(- l , t )=  U(l,t)=O, U(x, 0) = - sin (nx). (72) 
This problem has been studied extensively by a number of authors, using techniques ranging from 
standard finite difference to single-domain spectral collocation and spectral element.42 The 
solution to this problem develops a very steep gradient region in the centre of the domain; the slope 
at x = 0 reaches a maximum, then decreases as the initial energy is dissipated away. For the 
parameters studied in Reference 42 (v = O.Ol/n), this maximum is reached at t = 05; avery accurate 
analytical solution gives a value of 152.00516 for this maximum slope. The evolution of this 
solution calculated from the present method is shown in Figure 12 at time increments of 0.1. 

In the present study of this problem, three domains were used, the middle domain spanning a 
very small region ( f 005) around the 'shock'. Additionally, a mapping was applied in the middle 
domain, to improve resolution, of the form 

x' = sinh (j?xc)/ sinh (j?) , (73) 
where both the computational coordinate xc and the transformed coordinate x' are E [  - 1,1], and 
/3 is an 0(1) constant chosen to control the packing at x' = 0. The maximum stretching allowable in 
this mapping is subject to the same restriction as stretchings in single-domain discretizations; e.g. 
maximum metric ratios of the order of lo3. 

A second-order backward-Euler time-stepping technique was used; a time-step refinement study 
was performed to extrapolate out time-stepping errors. For this small one-dimensional problem, 
the algebraic system resulting from the spectral discretization of the equation plus interface 
conditions was Newton-linearized and solved directly using Gaussian elimination at each time 
step. 

From the comparison study contained in Reference 42, the two methods giving the best accuracy 
for a given number of grid points were single-domain spectral collocation and spectral element. 
The collocation scheme used a mesh stretching with a maximum-to-minimum metric ratio of 
about 100. Beyond this stretching, a degradation in accuracy was found to occur. The spectral 
element discretization utilized four elements with 16 nodes in each. The behaviour of the error in 
maximum slope from these methods and the present scheme is shown in Table VI. As can be seen, 
the present method with just 35 total points (12 points in the outer domain, 13 points in the middle 
domain, 12 points in the left outer domain; hereafter denoted 12/13/12) yields results of equivalent 
accuracy to the spectral element and single-domain spectral collocation methods of Reference 42, 
which both use 64 total points. Further mesh refinements using the present method show 

X 

Figure 12. Solution to viscous Burgers' equation with time; v = 0,01/n 
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exponential-order error convergence, as seen in Table VI by the order-of-magnitude decrease in 
relative error as the mesh is refined to 20/21/20and again with mesh refinement of 32/33/32. For 
the same total number of points, the present method is an order of magnitude more accurate than 
the single-domain collocation or spectral element solutions of Reference 42. 

In order to demonstrate the capability of the present method to handle radically different 
mappings between adjacent domains, a solution to the above viscous Burgers' equation for 
v = is shown in Figure 13. The maximum slope for this solution is greater than 5000. The 
discretization used was 12/31/12; the stretching in the middle domain was so severe that the ratio of 
largest mesh spacing in the outer domains to the smallest in the middle domain is greater than lo5. 
A factor-of-5000 magnification of the high-gradient region of this solution is shown in Figure 14. 
The emphasis in this plot is the oscillation-free resolution of this region. (Linear interpolation 
between points is used for plotting, making the plot appear somewhat jagged.) 

To demonstrate the generality of this multi-domain technique, a solution to the Poisson 
equation 

7cy 7cx 
2 4  uxx+u,,-cos-cos--, X€[-2,2], y € [ -  1,1], (74) 

u(x,  - 1) = u(x,  1) = u( - 2, y) = 4 2 ,  y) = 0 

Table VI. Maximum slope and per cent relative error in maximum 
slope for viscous Burger's equation (72); comparison of present method 

with results from Reference 42 

Method Discretization Maximum Per cent 
slope relative error 

Present 
Present 
Present 
Spectral 
element42 
Spectral 
c o l l ~ c a t i o n ~ ~  
Exact4* 

3 domains: 
1211 311 2 152.03544 1.99 (- 2) 
20/21/20 152.0001 1 3.23 (- 3) 
32/33/32 152.005 13 2.14 (-4) 

1611 611 611 6 152.04 2.29 (- 2) 

64 152.025 1.31 (-2) 

4 elements: 

1 domain: 

152.005 16 

1 .o 
.8 
.6 " .9 
.2 

0 
-.2 
-.4 

-.6 
-.8 

-1 .o 
-1.0 -.8 -.6 -.4 -.2 0 .2 .9 .6 .8 1.0 

X 

Figure 13. Solution to viscous Burgers' equation with time; v = 
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-5 , 0 \i* 5 x 104 
X 

Figure 14. Magnification of central region of Figure 13 

Figure 15. Skewed curvilinear multidomain mesh 

wasobtained on the skewed two-domain mesh shown in Figure 15. This mesh, containing 17 x 16 
and 18 x 17 points in the left and right domains respectively, was generated by first choosing the 
interface line, in this case a cubic polynomial. Chebyshev distributions with respect to arc length 
were used to establish the mesh points on the interface, as well as along the domain boundaries at 
x = & 2. One curvilinear co-ordinate family was generated by connecting these corresponding 
points with straight lines. Mesh points along these co-ordinate lines were then established with 
Chebyshev distributions with respect to arc length, resulting in a sheared non-orthogonal mesh. 
Equation (74) was written in generalized contravariant flux form; the metrics were evaluated by 
spectral differentiation of the co-ordinate distributions. The flux component normal to the 
interface was taken to be cmtinuous in the interface condition. As can be seen in the isolines of the 
solution shown in Figure 16, the solution is everywhere smooth and regular. 
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~~ ~ 

Figure 16. Isolines of solution to Poisson equation on mesh of Figure 15 

The second major difficulty in the application of spectral methods to aerodynamic problems 
occurs when the solution being sought is discontinuous. This situation appears, for instance, in the 
solution of the compressible Euler equations for supercritical flow with shocks. The difficulty is 
that the spectral global basis function ‘fit’ of the discontinuous solution is subject to Gibbs’ 
phenomenon and global low-order error convergence, since the accuracy of a spectral discretiz- 
ation is tied to the smoothness of the function being discretized. A solution may be obtained 
through the use of an artificial viscosity, as used in finite-difference or finite-element computations; 
or, equivalently, through the use of a filter. These techniques attenuate the high-frequency 
oscillations, rendering the solution essentially smooth on the scale of the mesh spacing. This 
technique was used in the application of spectral methods to supercritical potential flow discussed 
previously. Although solutions may be obtained by this procedure, spectral high-order accuracy is 
lost, and thus any advantage of the use of a spectral method is difficult to justify. 

One possible solution to this problem is the coupling of a multi-domain technique with a shock- 
fitting algorithm. In such a method, the position of the interface and the jump conditions across it 
are part of the solution. Another technique under study is to obtain the oscillatory solution which is 
characteristic of a spectral discretization of a discontinuous function and post-process it in such a 
way as to extract a spectrally accurate discontinuous solution. Such methods rely heavily on 
information content theories of Lax,43 which state essentially that the oscillations contain 
information about the tail of the truncated series representing the discontinuous function, and thus 
contain high-order information about the discontinuity. 

A number of methods to extract this information are being e ~ p l o r e d . ~ ~ . ~ ’  The first involves a 
concept of weak convergence. Say a solution is sought to 

u, = Lu,  (75) 

where L is a linear differential operator and the initial condition u(x,O) is discontinuous. The 
spectral solution to (75), uN, may not approximate well, pointwise, the exact solution u, but it may 
be shown44 that 

( U N , d 4 = ( U , + ) + & ,  (76) 
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0 ' recovered shock 
0 

, / 'ocat'on 

Figure 17. Isolines of viscosity-free solution to Euler equations with shock 

where 4 is a smooth test function and the error E is 

E - II 4 lls/N", s,  (77) 
and thus is spectrally small. This is the concept of weak convergence of the spectral solution to the 
exact solution. A particular construction of 4 may be used to extract spectrally accurate data from 
uN away from the discontinuity: 

4=4142, (78) 

where 41 is a spectral approximation to the Dirac delta function and & is a smooth cut-off 
function, which is zero outside the smooth region around the point under consideration. The inner 
product of this test function with the spectral solution may be to yield a spectrally 
accurate pointwise approximation to the exact solution. In practice, the accuracy of this technique 
depends on the distance from the discontinuity and works well only for large of N .  The theory for 
this technique is available for a Fourier-Galerkin discretization of a linear differential operator; 
extension to the Fourier collocation case requires a modification of the initial data. 

Another technique for dealing with a discontinuous solution is to fit a discontinuous function to 
the oscillatory spectral solution and extract the smooth part of the solution, which is, presumably, 
high-order accurate. An accurate estimate of the location and strength of the discontinuity may be 
obtained by this method.45 Figure 17 shows such an application. A Chebyshev collocation 
solution to the 2-D Euler equations was obtained on a 9 x 9 mesh with boundary conditions which 
produce a shock running at an angle through the domain. No artificial viscosity or damping was 
used in the computation due to the coarseness of the mesh; large oscillations appeared in the 
solution due to the shock. The oscillatory solution was post-processed by fitting with a step 
function; the shock location in the domain was recovered to 0.1 per cent of the exact solution, and 
the constant pre- and post-shock states were computed to 1 per cent. Note that the recovered shock 
location is two orders of magnitude more accurate than stating that the shock occurred at a 
particular mesh point, since the average mesh spacing in the field was 1/8. The discontinuity 
subtraction technique thus yields high-order accurate information on the location and strength of 
discontinuity in a spectral solution; however, discontinuous higher derivatives still remain. 
Application of a 'weak convergence filter' could provide a final, spectrally accurate solution. 

CONCLUSIONS 

Spectral methods have shown their utility on a wide range of aerodynamic and fluid mechanic 
problems. The primary advantage of their use over traditional finite-difference and finite-element 
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techniques lies in the high-order accuracy shown by these methods on properly formulated 
problems. This property can be used either to efficiently produce engineering-accuracy solutions or 
to generate solutions with accuracy unattainable by other methods. The latter situation is typically 
encountered in simulations of sensitive fluid mechanic phenomena. The further property that 
spectral methods strongly mimic the continuous solution to the analytic differential equation being 
discretized has been found to be crucial for bifurcation simulations. 

On the negative side, spectral methods are considerably more difficult to apply successfully than 
finite-difference or finite-element methods. Spectral methods are pathologically sensitive to 
formulation inconsistencies, due to their strong conformity with the behaviour of analytic 
differential equations. The use of proper boundary conditions is particularly crucial. Also, since the 
algebraic systems obtained from spectral discretization tend to be full and ill-conditioned, efficient 
solution schemes, are essential for the practical application of spectral methods. In addition, the 
requirement for global smooth mappings complicates their application in complex physical 
domains. Finally, discontinuous solutions necessitate special formulation and processing of the 
spectral method if the high-order property is to be maintained. Research in these areas is 
continuing, with considerable progress being made. 

REFERENCES 

1. B. A. Finlayson and L. E. Scriven, ‘The method of weighted residuals-a review’, Appl. Mech. Rev., 19,735-748 (1966). 
2. J. C. Slate:, ‘Electronic energy bands in metal’, Phys. Reo., 45, 794-801 (1934). 
3. J. Barta, ‘Uber die Naherungsweise Losung einiger Zweidimensionaler Elastizitatsaufgaben’, 2. Angew. Math. Mech., 

4. R. A. Frazer, W. P. Jones and S. W. Skan, ‘Approximation to functions and to the solutions of differential equations’, 

5. C. L. Lanczos, ‘Trigonometric interpolation of empirical and analytic functions’, J .  Math. Phys., 17, 123-199 (1938). 
6. C. W. Clenshaw, ‘The numerical solution of linear differential equations in Chebyshev series’, Proc. Cambridge Phil. 

7. C. W. Clenshaw and H. J. Norton, ‘The solution of nonlinear ordinary differential equations in Chebyshev series’, 

8. K. Wright, ‘Chebyshev collocation methods for ordinary differential equations’, Comput. J . ,  6,  358-365 (1964). 
9. J. V. Villadsen and W. E. Stewart, ‘Solution of boundary value problems by orthogonal collocation’, Chem. Eng. Sci., 

10. H.-0. Kreiss and J. Oliger, ‘Comparison of accurate methods for the integration of hyperbolic equations’, Report 
No .  36, Department of Computer Science, Uppsala University, Sweden, 1971. 

11. S. A. Orszag, ‘Comparison of pseudospectral and spectral approximations’, Stud. Appl. Math., 51, 253-259 (1972). 
12. I. Silberman, ‘Planetary waves in the atmosphere’, J .  Meteorol., 11, 27-34 (1954). 
13. S. A. Orszag, ‘Numerical methods for the simulation of turbulence’, Phys. Fluids, 12, Supplement 11, 250-257 (1969). 
14. E. Eliasen. B. Machenauer and E. Rasmussen. ‘On a numerical method for intearation ofthe hvdrodvnamical eauations 

17, 184-185 (1937). 

Report and Memo No.  1799, Great Britain Aero. Res. Council, London, 1937. 

SOC., 53, 134-149 (1957). 

Comput. J., 6, 88-92 (1963). 

22, 1483-1501 (1967). 

15. 

16. 
17. 

18. 

19. 
20. 

21. 

22. 

23. 

with a spectral representation of the horizontal fields’, Report No.  2, Department of Mkteorology, Copdnhagen 
University, Denmark, 1970. 
D. Gottlieb and S. A. Orszag, ‘Numerical analysis of spectral methods: theory and applications’, CBMS-NSF Regional 
Conference Series in Applied Mathematics, SIAM, 1977. 
P. J. Davis and P. Rabinowitz, Numerical Integration, Blaisdell, MA, 1967. 
C. Canuto and A. Ouarteroni, ‘ApDroximation results for orthogonal polynomials in Sobolev spaces’, Math. Comput., ._  - . .  
38, No. 157 (1982): 
C. L. Streett and M. Y. Hussaini. ‘Finite leneth Tavlor-Couette flow’. Proc. ICASEINASA WorkshoD on Stabilitv of - -  . I  

Time Dependent and Spacially Varying Flows, Hampton, VA, August 1985. 
S. A. Orszag, ‘Spectral methods for problems in complex geometries’, J .  Comput. Phys., 37, 70-92 (1980). 
C. L. Streett and M. G. Macaraeg, ‘Preconditioning for first-order spectral discretizations’, NASA 7M-87614, August 
1986. 
W. Hackbusch and U. Trottenberg (eds), Multigrid Methods, Lecture Notes in Mathematics, 960, Springer-Verlag, New 
York, 1982. 
T. A. Zang, Y. S. Wong and M. Y. Hussaini, ‘Spectral multigrid methods for elliptic equations’, J .  Comput. Phys., 48, 

T. A. Zang, Y. S. Wong and M. Y. Hussaini, ‘Spectral multigrid methods for elliptic equations 11’, J .  Compur. Phys., 
485-501 (1982). 

54,489-507 (1984). 



SPECTRAL METHODS 1189 

24. C. L. Streett, T. A. Zang and M. Y. Hussaini, ‘Spectral multigrid methods with applications to transonicpotential flow’, 

25. C. L. Streett, ‘A spectral method for the solution of transonic potential flow about an arbitrary airfoil’, Proc. Sixth 

26. A. Jameson, ‘Acceleration of transonic potential flow calculations on arbitrary meshes by the multiple grid method’, 

27. T. L. Holst, ‘A fast, conservative algorithm for solving the transonic full-potential equation’, AIAA Paper 79-1456, 

28. M. M. Hafez, J. C. South and E. M. Murman, ‘Artificial compressibility methods for numerical solution of transonic 

29. C. L. Streett, T. A. Zang and M. Y. Hussaini, ‘Spectral methods for solution of the boundary-layer equation’, AIAA 

30. J. E. Carter, ‘Inverse boundary-layer theory and comparison with experiment’, NASA TP-1208, July 1978. 
31. M. Y. Hussaini and T. A. Zang, ‘Spectral methods in fluid dynamics’, ICASE Report No.  86-25, 1986; see also NASA 

CR-178103, May 1986. 
32. R. C. DiPrima and H. L. Swinney, ‘Instabilities and transitions in flow between concentric rotating cylinders’, in H. L. 

Swinney and J. P. Gollub (eds), Hydrodynamic Instabilities and the Transition to Turbulence, Springer-Verlag, New 
York, 1981. 

33. G. Pfister, ‘Deterministic chaos in rotational Taylor-Couette flow’, Lecture Notes in Physics, 235, 199-210 (1985). 
34. A. Aitta, G. Ahlers and D. S. Cannel, ‘Tricritical phenomena in rotating Couette -Taylor flow’, Phys. Rev. Lett., 54, 

ICASE Report No. 83-11, 1983. 

AIAA Computational Fluid Dynamics Conference, Danvers, MA, July 1983. 

AIAA Paper 79-1458, 1979. 

1979. 

full potential equation’, AIAA J.,  17, 838-844 (1979). 

Paper 84-0170, January 1984. 

673-676 (19851 
35. 
36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

T. B. Benjamin and T. Mullin, ‘Anomalous modes in the Taylor experiment’, Proc. SOC. London A,  377,221-249 (1981). 
M. Lucke, M. Mihelcic, K. Wingerath and G. Pfister, ‘Flow in a small annulus between concentric cylinders’, J .  Fluid 
Mech., 140, 343-353 (1984). 
J. F. Thompson, F. C. Thames and C. W. Mastin, ‘Automatic numerical generation of body-fitted curvilinear 
coordinate system for field containing any number of arbitrary two-dimensional bodies’, J. Comput. Phys., 15,299-319 
(1974). 
R. L. Sorenson and J. L. Steger, ‘Use of hyperbolic partial differential equations to generate body-fitted coordinates’, in 
Numerical Grid Generation Techniques, NASA CP-2166, 1982. 
A. T. Patera, ‘A spectral element method for fluid dynamics: laminar flow in a channel expansion’, J .  Comput. Phys., 

A. T. Patera, ‘Fast direct Poisson solvers for high-order finite element discretizations in rectangularly decomposable 
domains’, J. Comput. Phys., 65, (1986). 
M. G. Macaraeg and C. L. Streett, ‘Improvements in spectral collocation through a multiple domain technique’, Appl. 
Numer. Methods, 2, No. 2, 95-108 (1986). 
C. Basdevant, M. Deville, P. Haldenway, J. Lacroix, D. Orlandi, J. Quazzani, A. Patera and R. Petret, ‘Spectral and 
finite difference solutions of the Burgers’ equation’, Comput. and Fields, 14, 23-41 (1986). 
P. D. Lax, ‘Accuracy and resolution in the computations of solutions of linear and nonlinear equations’, in Recent 
Adoances in Dimensional Analysis, MRC University at Wisconsin, Academic Press, 1978, pp. 107-1 17. 
D. Gottlieb and E. Tadmor, ‘Recovering pointwise values of discontinuous data within spectral accuracy’, ICASE 
Report No. 85-3, January 1985. 
D. Gottlieb, L. Lustman and C. L. Streett, ‘Spectral methods for two-dimensional shocks’, ICASE Report No. 82-38, 
November 1982. 

54,468-488 (1984). 




